Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Signal Behav ; 19(1): 2326238, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38493505

RESUMEN

Mitogen-activated protein kinase (MPK) cascades are essential signal transduction components that control a variety of cellular responses in all eukaryotes. MPKs convert extracellular stimuli into cellular responses by the phosphorylation of downstream substrates. Although MPK cascades are predicted to be very complex, only limited numbers of MPK substrates have been identified in plants. Here, we used the kinase client (KiC) assay to identify novel substrates of MPK3 and MPK6. Recombinant MPK3 or MPK6 were tested against a large synthetic peptide library representing in vivo phosphorylation sites, and phosphorylated peptides were identified by high-resolution tandem mass spectrometry. From this screen, we identified 23 and 21 putative client peptides of MPK3 and MPK6, respectively. To verify the phosphorylation of putative client peptides, we performed in vitro kinase assay with recombinant fusion proteins of isolated client peptides. We found that 13 and 9 recombinant proteins were phosphorylated by MPK3 and MPK6. Among them, 11 proteins were proven to be the novel substrates of two MPKs. This study suggests that the KiC assay is a useful method to identify new substrates of MPKs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Arabidopsis/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilación , Péptidos/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Signal Behav ; 18(1): 2270835, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37902267

RESUMEN

Quercetin is a flavonol belonging to the flavonoid group of polyphenols. Quercetin is reported to have a variety of biological functions, including antioxidant, pigment, auxin transport inhibitor and root nodulation factor. Additionally, quercetin is known to be involved in bacterial pathogen resistance in Arabidopsis through the transcriptional increase of pathogenesis-related (PR) genes. However, the molecular mechanisms underlying how quercetin promotes pathogen resistance remain elusive. In this study, we showed that the transcriptional increases of PR genes were achieved by the monomerization and nuclear translocation of nonexpressor of pathogenesis-related proteins 1 (NPR1). Interestingly, salicylic acid (SA) was approximately 2-fold accumulated by the treatment with quercetin. Furthermore, we showed that the increase of SA biosynthesis by quercetin was induced by the transcriptional increases of typical SA biosynthesis-related genes. In conclusion, this study strongly suggests that quercetin induces bacterial pathogen resistance through the increase of SA biosynthesis in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quercetina/farmacología , Quercetina/metabolismo , Mutación , Regulación de la Expresión Génica de las Plantas , Ácido Salicílico/metabolismo , Enfermedades de las Plantas/microbiología
3.
Nucleic Acids Res ; 50(18): 10544-10561, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36161329

RESUMEN

Since plants are sessile organisms, developmental plasticity in response to environmental stresses is essential for their survival. Upon exposure to drought, lateral root development is suppressed to induce drought tolerance. However, the molecular mechanism by which the development of lateral roots is inhibited by drought is largely unknown. In this study, the auxin signaling repressor IAA15 was identified as a novel substrate of mitogen-activated protein kinases (MPKs) and was shown to suppress lateral root development in response to drought through stabilization by phosphorylation. Both MPK3 and MPK6 directly phosphorylated IAA15 at the Ser-2 and Thr-28 residues. Transgenic plants overexpressing a phospho-mimicking mutant of IAA15 (IAA15DD OX) showed reduced lateral root development due to a higher accumulation of IAA15. In addition, MPK-mediated phosphorylation strongly increased the stability of IAA15 through the inhibition of polyubiquitination. Furthermore, IAA15DD OX plants showed the transcriptional downregulation of two key transcription factors LBD16 and LBD29, responsible for lateral root development. Overall, this study provides the molecular mechanism that explains the significance of the MPK-Aux/IAA module in suppressing lateral root development in response to drought.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Front Plant Sci ; 12: 672552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093630

RESUMEN

Flavonoids are well known for the coloration of plant organs to protect UV and ROS and to attract pollinators as well. Flavonoids also play roles in many aspects of physiological processes including pathogen resistance. However, the molecular mechanism to explain how flavonoids play roles in pathogen resistance was not extensively studied. In this study, we investigated how naringenin, the first intermediate molecule of the flavonoid biosynthesis, functions as an activator of pathogen resistances. The transcript levels of two pathogenesis-related (PR) genes were increased by the treatment with naringenin in Arabidopsis. Interestingly, we found that naringenin triggers the monomerization and nuclear translocation of non-expressor of pathogenesis-related genes 1 (NPR1) that is a transcriptional coactivator of PR gene expression. Naringenin can induce the accumulation of salicylic acid (SA) that is required for the monomerization of NPR1. Furthermore, naringenin activates MPK6 and MPK3 in ROS-dependent, but SA-independent manners. By using a MEK inhibitor, we showed that the activation of a MAPK cascade by naringenin is also required for the monomerization of NPR1. These results suggest that the pathogen resistance by naringenin is mediated by the MAPK- and SA-dependent activation of NPR1 in Arabidopsis.

5.
Front Plant Sci ; 11: 1239, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903377

RESUMEN

Lateral root development is known to be regulated by Aux/IAA-ARF modules in Arabidopsis thaliana. As components, several Aux/IAAs have participated in these Aux/IAA-ARF modules. In this study, to identify the biological function of IAA15 in plant developments, transgenic plant overexpressing the gain-of-function mutant of IAA15 (IAA15P75S OX) under the control of dexamethasone (DEX) inducible promoter, in which IAA15 protein was mutated by changing Pro-75 residue to Ser at the degron motif in conserved domain II, was constructed. As a result, we found that IAA15P75S OX plants show a decreased number of lateral roots. Coincidently, IAA15 promoter-GUS reporter analysis revealed that IAA15 transcripts were highly detected in all stages of developing lateral root tissues. It was also verified that the IAA15P75S protein is strongly stabilized against proteasome-mediated protein degradation by inhibiting its poly-ubiquitination, resulting in the transcriptional repression of auxin-responsive genes. In particular, transcript levels of LBD16 and LBD29, which are positive regulators of lateral root formation, dramatically repressed in IAA15P75S OX plants. Furthermore, it was elucidated that IAA15 interacts with ARF7 and ARF19 and binds to the promoters of LBD16 and LBD29, strongly suggesting that IAA15 represses lateral root formation through the transcriptional suppression of LBD16 and LBD29 by inhibiting ARF7 and ARF19 activity. Taken together, this study suggests that IAA15 also plays a key negative role in lateral root formation as a component of Aux/IAA-ARF modules.

6.
Front Plant Sci ; 11: 111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153614

RESUMEN

Seed germination is a complex biological process controlled by various regulators, including phytohormones. Among these, abscisic acid and gibberellic acid inhibit and promote seed germination, respectively. Many studies have addressed the biological roles of auxin in plant growth and development, but very few have considered its role in seed germination. Here, we identified a novel function of the auxin signaling repressor Aux/IAA8 during seed germination. The IAA8 loss-of-function mutant iaa8-1 exhibited delayed seed germination. The phenotype of iaa8-1 was restored by ectopic expression of IAA8. Interestingly, IAA8 accumulated to high levels during seed germination, which was achieved not only by increased protein synthesis but also by the stabilization of IAA8 protein. We also showed that IAA8 down-regulates the transcription of ABSCISIC ACID INSENSITIVE3 (ABI3), a negative regulator of seed germination. Our study, thus strongly suggest that the auxin signaling repressor IAA8 acts as a positive regulator of seed germination in Arabidopsis thaliana.

7.
Nucleic Acids Res ; 45(11): 6613-6627, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28510716

RESUMEN

The expression of CBF (C-repeat-binding factor) genes is required for freezing tolerance in Arabidopsis thaliana. CBFs are positively regulated by INDUCER OF CBF EXPRESSION1 (ICE1) and negatively regulated by MYB15. These transcription factors directly interact with specific elements in the CBF promoters. Mitogen-activated protein kinase (MAPK/MPK) cascades function upstream to regulate CBFs. However, the mechanism by which MPKs control CBF expression during cold stress signaling remains unknown. This study showed that the activity of MYB15, a transcriptional repressor of cold signaling, is regulated by MPK6-mediated phosphorylation. MYB15 specifically interacts with MPK6, and MPK6 phosphorylates MYB15 on Ser168. MPK6-induced phosphorylation reduced the affinity of MYB15 binding to the CBF3 promoter and mutation of its phosphorylation site (MYB15S168A) enhanced the transcriptional repression of CBF3 by MYB15. Furthermore, transgenic plants overexpressing MYB15S168A showed significantly reduced CBF transcript levels in response to cold stress, compared with plants overexpressing MYB15. The MYB15S168A-overexpressing plants were also more sensitive to freezing than MYB15-overexpressing plants. These results suggest that MPK6-mediated regulation of MYB15 plays an important role in cold stress signaling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Respuesta al Choque por Frío , ADN de Plantas/química , ADN de Plantas/genética , Activación Enzimática , Congelación , Regulación de la Expresión Génica de las Plantas , Sistema de Señalización de MAP Quinasas , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Mapas de Interacción de Proteínas , Nicotiana , Regulación hacia Arriba
8.
Nucleic Acids Res ; 40(18): 9182-92, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22826500

RESUMEN

Transcriptional repression of pathogen defense-related genes is essential for plant growth and development. Several proteins are known to be involved in the transcriptional regulation of plant defense responses. However, mechanisms by which expression of defense-related genes are regulated by repressor proteins are poorly characterized. Here, we describe the in planta function of CBNAC, a calmodulin-regulated NAC transcriptional repressor in Arabidopsis. A T-DNA insertional mutant (cbnac1) displayed enhanced resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae DC3000 (PstDC3000), whereas resistance was reduced in transgenic CBNAC overexpression lines. The observed changes in disease resistance were correlated with alterations in pathogenesis-related protein 1 (PR1) gene expression. CBNAC bound directly to the PR1 promoter. SNI1 (suppressor of nonexpressor of PR genes1, inducible 1) was identified as a CBNAC-binding protein. Basal resistance to PstDC3000 and derepression of PR1 expression was greater in the cbnac1 sni1 double mutant than in either cbnac1 or sni1 mutants. SNI1 enhanced binding of CBNAC to its cognate PR1 promoter element. CBNAC and SNI1 are hypothesized to work as repressor proteins in the cooperative suppression of plant basal defense.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Resistencia a la Enfermedad/genética , Proteínas Nucleares/metabolismo , Enfermedades de las Plantas/genética , Proteínas Represoras/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Pseudomonas syringae , ARN Mensajero/biosíntesis , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Ácido Salicílico
9.
Biochem Biophys Res Commun ; 423(4): 703-8, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22704933

RESUMEN

The phytohormones abscisic acid (ABA) and gibberellic acid (GA) have antagonistic roles in the control of seed germination and seedling development. We report here that the transcriptional regulator MYB44 has a role in the control of seed germination in Arabidopsis thaliana. High levels of the MYB44 transcript are found in dry seeds but the transcript levels decrease during germination. The decrease in transcript level during germination is inhibited by the GA biosynthesis inhibitor paclobutrazol (PAC). MYB44 is phosphorylated by both recombinant and native forms of MPK3 and MPK6 at Ser(53) and Ser(145). Transgenic overexpression of MYB44 results in increased sensitivity of seed germination to ABA or PAC treatment. The PAC-insensitive germination phenotype of the myb44 mutant is complemented by overexpression of wild type MYB44 but not by overexpression of a mutant protein that lacks the MPK-target serines indicating that phosphorylation of MYB44 by MPKs is required for its biological function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Semillas/metabolismo , Semillas/fisiología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...